中空高速 3 爪ドローダウンチャック HIGH SPEED type 3-JAW THROUGH-HOLE DRAW DOWN POWER CHUCK

H3ET

取扱説明書 INSTRUCTION MANUAL

本取扱説明書をよく読み,内容を十分理解した上でこの製品を使用してください。

この取扱説明書は大切に保管し,製品の所有者が変わった場合,この説明書も新しい所有者に 手渡してください。

A IMPORTANT

Be sure to read and understand this instruction manual thoroughly before operating this product.

Please save this manual. When ownership of this product is transferred, submit this manual to the new owner.

豊和互業株式會社 HOWA MACHINERY, LTD.

目 次

はじめに

安全についてのインフォメーション

安全のために
 1. 構造と作動・・・・・・・・・・・・・・・・・ 4
1.1 形番表示・・・・・・・・・・・・・・・4
1.2 構造と作動・・・・・・・・・・・・・・・4
2. 取付け方法・・・・・・・・・・・・・・・ 4
2.1 開梱・・・・・・・・・・・・・・・・・・・4
2.2 付属品・・・・・・・・・・・・・・・5
2.3 準備するもの・・・・・・・・・・・・5
2.4 ストローク規制・・・・・・・・・・5
2.5 取付作業・・・・・・・・・・・・・ 5
2.5.1 作業を始める前に ・・・・・・・ 5
2.5.2 ドロースクリュの取外し・・・・・・ 5
2.5.3 ドロースクリュのねじ加工・・・・・・ 6
2.5.4 ドロースクリュの取付け・・・・・・6
2.5.5 チャックアダプタの取付け ・・・・・・ 6
2.5.6 チャックの取付け ・・・・・・・ 7
2.5.7 点検・・・・・・・・・・・ 8
2.5.8 バランス・・・・・・・・9
3. 使用上の注意・・・・・・・・・・・ 9
3.1 トップジョーの選定・・・・・・・・・9
3.2 トップジョーの取付け・・・・・・・・ 1C
3.3 トップジョーの成形・・・・・・・・・・ 11
3.4 ストッパの取付け・・・・・・・・・・ 13
3.5 使用条件の設定・・・・・・・・・・・ 13
3.5.1 許容シリンダカ・・・・・・・・ 14
3.5.2 ワークの変形・・・・・・・・・ 14
3.6 作業上の注意・・・・・・・・・・・・ 14
3.6.1 ワークを把握する前に ・・・・・・・15
3.6.2 ワークを把握するとき ・・・・・・・15
3.6.3 切削中 ・・・・・・・・・・・・・16
3.6.4 作業終了・・・・・・・・・・ 16
4. 保守・・・・・・・・・・・・・・・・・・ 17
4.1 給油・・・・・・・・・・・・・・・・17
4.2 給油個所と給油方法・・・・・・・・・ 17
4.3 分解と清掃・・・・・・・・・・・・・ 18
4.3.1 分解手順・・・・・・・・・・ 18
4.3.2 組立手順・・・・・・・・・・・ 18
4.4 安全回転数の設定・・・・・・・・・・ 18
4.5 パーツリスト・・・・・・・・ 2C
5. 故障対策・・・・・・・・・・・・・・ 21
6. 仕様・・・・・・・・・・・・・・・22
6.1 仕様・・・・・・・・・・・・22
6.2 寸法・・・・・・・・・・・・・・・23
6.3 把握力・・・・・・・・・・・・・・・・・24
6.4 標準生爪・・・・・・・・・・・・・・・・24
5.5 15 /15/15
限定保証・・・・・・・・・・・・・・・・・・・ 25

はじめに

- 1. この取扱説明書は、H3ET形中空形高速3爪ドローダウンチャックチャックの標準形について説明しています。
- 2. このチャックをご使用いただく前に、必ずこの取扱説明書を熟読し、取付け・運転・点検・保守について十分に理解した上でご使用くださるようお願いします。
- 3. この取扱説明書の記載事項を守らない場合、作業者や周りの人を巻き込んだ重大な事故や機械の破損に結びつ く事があります。
- 4. この取扱説明書は常に手元に置き、紛失しないように大切に保管してください。
- 5. この取扱説明書と、この取扱説明書が対象とする製品についての問い合わせは下記へお願いします。 またこの取扱説明書を紛失したときも下記へ直接請求してください。

豊和工業株式会社 機械事業部 CE 営業グループ 機器チーム

〒452-8601 愛知県清須市須ケロ 1900 番地 1 TEL (052) 408-1254 FAX (052) 409-3766

6. この取扱説明書はSI単位で書かれています。

従来単位による数値は以下の式で求めることができます。

压力 1MPa=10.197kgf/cm²

力 1kN =101.97kgf

トルク 1N·m=0.10197kgf·m

安全についてのインフォメーション

この製品を安全にご使用していただくために必要な警告事項を,安全警告シンボルと共に記載してあります。警告 事項を良く読み,十分に理解してください。

この取扱説明書の警告メッセージをより良く理解していただくために,警告シンボルを次のように使い分けてあります。

この表示は、取扱いを誤った場合に、重傷もしくは死に至る危険が切迫して生じることが 想定される事項を示します。

これらの警告メッセージには、危険を回避するのに講じなければならない予防措置が含まれます。

この表示は,取扱いを誤った場合に,重傷もしくは死に至る可能性が想定される事項を示します。

これらの警告メッセージには、危険を回避するのに講じなければならない予防措置が含まれます。

この表示は,取扱いを誤った場合に,軽微なケガの発生または機械の損傷が想定される状態を示します。

当社は、あらゆる環境下における運転・操作・点検・保守のすべての危険を予測することはできません。そのため、この取扱説明書に明記されている警告は、安全のすべてを網羅したものではありません。

また、「できないこと」や「してはいけないこと」は極めて多くあり、この取扱説明書にすべて書く事はできません。この取扱説明書に「できる」と書いてない限り、「できない」と考えてください。もし、この取扱説明書に書かれていない運転・操作・点検・保守を行う場合、安全に対する必要な配慮は、すべて自分の責任でお考え願います。

安全のために

ご使用の前に特に知っておいていただきたいこと、守っていただきたいことをまとめています。必ずお読みください。

スピンドル回転中は,回転シリンダの切換弁の操作を行ってはならない。

把握したワークが飛散し危険です。

スピンドル回転中は,スピンドルカバーの中に体の一部を入れて はならない。

回転物に巻込まれ危険です。

回転シリンダの電磁弁は、無通電時把握する回路とすること。 把握したワークが飛散し危険です。

把握中は、回転シリンダの油圧力を一定に保つこと。

把握したワークが飛散し危険です。

チャックの取付け・点検・保守の時には、電源を切ること。 回転物に巻き込まれ危険です。

最高使用回転数以内で使用すること。

回転数の増加により把握力が低下するため、ワークが飛散し危険です。

ボルトの締付けは確実に行うこと。

ボルトの緩み、ボルトの破損による部品やワークの飛散が発生するおそれがあります。

ボルトのサイズと締付けトルクを下表に示します。

締付トルク

ボルトサイズ	M6	M8	M10	M12	M14	M16
締付トルク (N·m)	12.1	29.4	57.9	101	128	161

定期的に給油を行うこと。

給油を怠ると製品の寿命を著しく縮める結果となることがあります。

給油は8時間の使用につき1回を目安としますが、水溶性切削油を多量に使用する場合は、4時間の使用につき1回としてください。

推奨油種

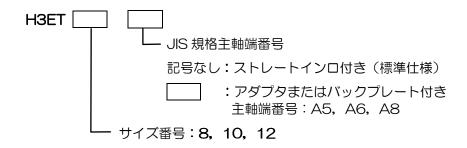
モリコート EP グリース (東レ・ダウコーニング (株))

消耗品を含むすべての部品は豊和工業へ注文してください。

豊和工業が扱う以外の部品を用いて発生する事故については、その責を負いかねます。また豊和工業の純正部品を用いない限り、すべての保証は無効になります。

内径把握はできません。

内径把握をすると、把握精度の不良や把握力の不足を引き起こす場合があります。そのような状態で切削をおこなうと、ワークが外れて作業者や近くにいる人にけがを負わせるおそれがあります。

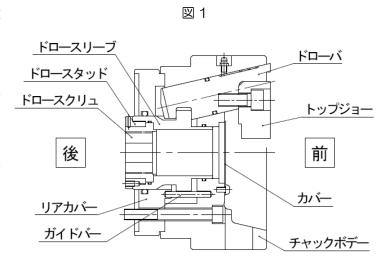

チャックの取付け取外しの時はアイボルトを使用すること。 (6インチ以下は吊りベルト、8インチ以上はアイボルトを使用)

手を滑らしてチャックを落したり、腰をいためたりするおそれがあります。

1. 構造と作動

11 形番表示

H3ET形 中空高速3 爪ドローダウンチャックは次のように分類されます。


1.2 構造と作動

H3ET形中空高速3爪ドローダウンチャックは大きく分けてチャックボデー、ドローバおよびドロースリーブより構成されています。

ドローバは、チャックボデーの回転中心に対して 傾斜した穴に挿入されています。ドローバの後方 には切欠き溝が設けてあり、この切欠き溝でドロ ースリーブとかみ合っています。

ドロースリーブが後方へ引かれると、ドローバは くさび作用によりトップジョーを介してワークを チャック端面に引き付けて把握します。

なお, このチャックは内径把握はできません。

注意

この取扱説明書の中では、トップジョーが付いている側を前、ドロースクリュが付いている側を後 とします。

2. 取付け方法

2.1 開 梱

チャックを梱包箱から取出します。8インチのチャックは重量が20kg以上あります。腰をいためたり、落してけがをする恐れがありますから、手で動かしたり持ち上げたりせず箱を壊して付属のアイボルトをチャック外周のねじ穴にねじこみ、チェンブロックなどを用いて吊り上げてください。

チャックの取付け、取外しの時はアイボルトを使用すること。

手を滑らしてチャックを落したり腰をいためたりする恐れがあります。

22 付属品

梱包箱にはチャック本体の他に、付属品が同梱されていますので確認してください。 (詳細については、6.5 付属品の項を参照してください。)

2.3 準備するもの

直装形のH3ET □ A □ 形チャックを除き、旋盤の主軸にチャックを取付けるためにはチャックアダプタが必要です。 チャックアダプタを設計する上で不明な点がありましたら、当社へ問い合わせてください。

チャックを作動させるためには、チャックアダプタの他に回転シリンダ、シリンダアダプタ、コネクチングパイプ および油圧源または空気圧源が必要ですが、これらについては回転シリンダの取扱説明書を参照してください。 当社はご要望があればコネクチングロッドの図面をチェック致します。

コネクチングパイプは、使用する旋盤とチャックに適したものを使用しなければなりません。

コネクチングパイプを強度上十分なものとすることは非常に重要です。

強度が不足して破断すると把握力が一瞬のうちに失われ、ワークの飛散が発生します。

2.4 ストローク規制

このチャックでは、回転シリンダのシリンダストロークをチャックのプランジャ(ドロースリーブ)ストロークに合わせて規制する必要はありませんが、ドロースリーブがリアカバーに当たって止まるように、 ドロースクリュを調整して使用してください。

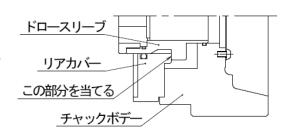
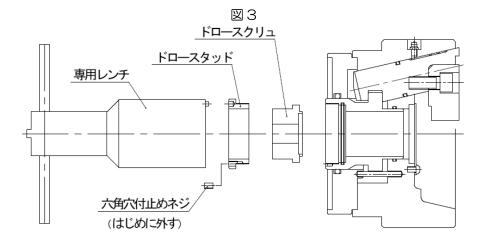


図2

2.5 取付作業

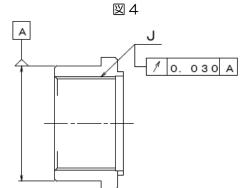

2.5.1 作業を始める前に

梱包箱から取出したチャックの表面に付着した防錆油は、布に浸した洗浄油で拭き取ってください。

2.5.2 ドロースクリュの取外し

チャックを作動させるにはドロースクリュにめねじを加工して、コネクチングパイプと接続できるようにする必要があります。そのためには、ドロースクリュをドロースリーブから取外さなければなりません。

ドロースクリュは、六角穴付止めネジを外してから、ドロースタッドを外せば取外すことができます。 リテーナの着脱には付属の専用レンチを使用します。


2.5.3 ドロースクリュのねじ加工

コネクチングパイプのねじ径に合せてドロースクリュに「めねじ」Jを加工します。チャックサイズに対する「めねじ」の最大加工可能径は表 1 の通りです。

ねじは、振れが図4に示した公差を超えないようにしてください。

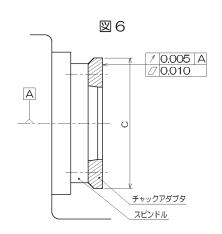
表1

チャックサイズ	8	10	12
J _{max}	M45	M65	M92



コネクチングパイプは、ねじを切った後でも十分な強度が確保できる肉厚がなければなりません。

2.5.3項で示した、ねじ加工を行う上での注意は、ドロースクリュの強度を確保するために必ず守らなければなりません。いずれか一方でも確認を怠れば、コネクチングパイプまたはドロースクリュの破損により把握力が一瞬のうちに失われてしまいます。その結果、切削中のワークが外れて、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。


2.5.4 ドロースクリュの取付け

ドロースクリュにめねじを加工したら、取外しと逆の順序で取付けます。 止めねじには緩み止め剤を塗布して組み付けてください。

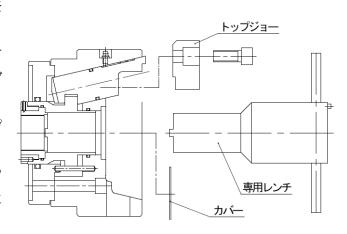
2.5.5 チャックアダプタの取付け

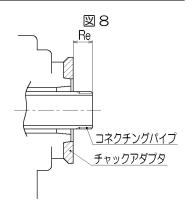
チャックアダプタを主軸前端に取付けます。チャックアダプタのチャック取付インロ部および基準端面は、主軸に取付けてから加工してください。チャック取付インロ部Cとチャックアダプタのスキマは直径で0.040~0.050mmとします。

2.5.6 チャックの取付け

- ① チャックを取付ける前にトップジョーおよびカバーを 取外します。
- ② チャックボデーの外周には、ネジ穴が設けてありますから、ここに付属のアイボルトをねじ込み、吊り上げます。
- ③ 油圧または空気圧回路を操作してコネクチングパイプを前進端まで前進させます。

この状態における、チャックアダプタ前端面とコネクチングパイプの前端面との間の距離Reは表2の値とします。




図7

▲注意

Re 寸法が表 1 の値より大きいと、チャックを取付けることができません。

表2

チャックサイズ	8	10	12
Re±1 (mm)	20	22	27

▲警告

コネクチングロッドのねじ込み深さRe寸法は適正な長さとすること。

Re寸法が表1の値より大きいと、ドロースクリュに対するコネクチングパイプのねじ込み深さが足りないために、ねじが破損して把握力が一瞬のうちに失われてしまいます。このような事故が起きれば、切削中のワークが外れて、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

- ④ チャックの前側から、付属の専用レンチを挿入して、ドロースクリュを回すことができることを確認します。
- ⑤ チャックをチェンブロックで保持しながら、コネクチングパイプにドロースクリュを、それ以上回らなくなるまでねじ込みます。

チャック取付け中に油圧または空気圧回路を操作する場合には、十分注意してこれを行ってください。

チャック取付け中にこれらを誤って操作すると、チャックボデーとスピンドルの間やトップジョーの間に作業者の身体の一部がはさまれてけがをすることがあります。

⑥ チャックボデーを付属のチャック取付ボルトでチャックアダプタに取付けます。 チャックボデーの外周と端面の振れが、表3の値以下となるように取付けてください。

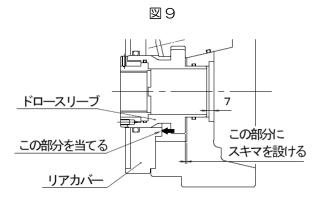
表3

チャックサイズ		8	10	12
外周の振れ T.I.R	(mm)		0.020	
端面の振れ T.I.R	(mm)		0.020	

チャック取付ボルトの締付トルクは表4の値とします。

表 4

ボルトサイズ	M12	M16
締付トルク (N・m)	101	161


ボルトの締付けは確実に行うこと。

締付トルクが不足したり大きすぎるとボルトが破損して、チャックやワークが脱落する おそれがあります。このような事故が起きれば、チャックやワークが外れて、作業者や 近くにいる人に致命的なけがを負わせるおそれがあります。

⑦ 専用レンチを用いてドロースクリュを回し、ドロースリーブの位置を調整します。

前進端におけるドロースリーブの適正な位置は、図9に示すカバー取付面からドロースリーブ前端面の寸法が7mmとなる位置です。

なお、ドロースクリュにはクリック(回り止めのボール プランジャー)が設けてありますので、少し回転が重く なった位置で停止させて、調整してください。

- ⑧ 最後に、カバーおよびトップジョーを取付けて、作業を終えます。
- ⑨ アイボルトをチャック外周に取付けて作業を行ったときは、作業終了後必ずこれを取外します。

アイボルトをチャック外周に取付けて作業を行なったときは,作業終了後必ずこれを取外 すこと。

アイボルトを付けたままチャックを回転させると、作業者の体の一部や衣服が巻込まれ、 負傷するおそれがあります。

2.5.7 点 検

取付けに何らかの異状がある場合には作動抵抗が大きく、そのまま使用すると、部品の焼付きや異常摩耗を引き起こし、チャックの寿命を著しく縮めます。取付けを終えたら必ず最低作動圧を調べ、これが異常に高い場合にはチャックを取外して原因を取除く必要があります。

2.5.8 バランス

追加工や治具取付けによってアンバランスにならないように注意してください。アンバランスがありますと振動などが発生して加工精度不良となります。

アンバランスの大きいワークの場合, ワークの偏心質量による遠心力がトップジョーに加わりますので, 十分検討し低い回転速度で加工してください。

本書が対象とするチャックの釣合い良さは、JIS B0905-1992 で定義される釣合い良さ 4mm/s を基準とし、チャック外周における不釣合いの大きさは、表5のように規定してあります。

(JIS B0905-1992 の対応国際規格は、IS01940-1:1986 と IS08821:1989 です。)

表5

チャックサイズ	8	10	12
不釣合いの大きさ(最大) (g)	1.3	2.2	3.2

3. 使用上の注意

3.1 トップジョーの選定

チャックにはトップジョーとして標準生爪が一組取付けてあります。また、豊和工業では別売品として標準生爪の ほかに、ご注文に応じて専用トップジョーを製作致しておりますので、必要な場合は注文してください。ただし、 豊和工業が扱う以外のトップジョーを用いて発生する事故についてはその責を負いかねます。

消耗品を含むすべての部品は豊和工業へ注文してください。

豊和工業が扱う以外の部品を用いて発生する事故については、その責を負いかねます。 また豊和工業の純正部品を用いない限り、全ての保証は無効になります。

チャックとともに納入されるものより重いトップジョーは使用しないでください。

標準生爪より重量の大きなトップジョーをチャックに取付けて回転させると、重量の差に相当する遠心力だけ余分に把握力が失われます。

そのような状態で切削を行うと、ワークが外れて、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

標準生爪より高いトップジョーを用いる場合は,トップジョーの高さに反比例してシリン ダカを下げて下さい。

標準生爪の高さ(下図または寸法表の中の J2 寸法)より大きいトップジョーを用いると、カタログや仕様表に表示した許容シリンダカ以下でチャックを作動させても、トップジョー取付ボルトに許容値を超える力が作用して破損し、トップジョー自身やワークが外れるおそれがあります。

このような事故が回転中に起きれば、作業者や近くにいる人に致命的なけがを負わせる おそれがあります。

トップジョー取付けボルトが破損しないまでも、このような使用方法のもとではドローバのスライド部に大きな力が作用し寿命を著しく縮めるおそれがあります。

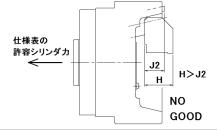
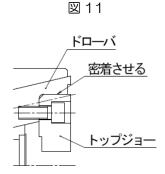



図 10

3.2 トップジョーの取付け

① ワークに合ったトップジョーを選定したら、これをチャックに取付けます。 取付ける前に、トップジョーとドローバの取付け端面およびはめあい部を圧縮空気で清掃します。圧縮空気で飛ばない汚れは、洗浄油で汚れを浮上らせてからブラシを掛け、圧縮空気で吹飛ばします。

注意

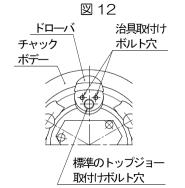
トップジョーとドローバの取付け端面およびはめあい部に傷が付いていると、ゴミが付着している場合と同様、トップジョーの取付けが安定せず、精度不良の原因になります。傷を発見した場合は、油砥石やヤスリで修正してください。

② トップジョーはドローバの取付け面とトップジョーの外周がかみ合って、ボルトにより固定される構造となっています。このため指定された位置以外ではご使用になれません。

トップジョーを正規の位置以外に取付けないでください。

トップジョーを、正規の位置以外に取付けると、ドローバが破損してトップジョーやワークが外れる場合があります。

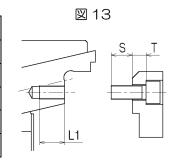
回転中にこのような事故が起きれば、作業者や近くにいる人に致命的なけがを負わせる おそれがあります。



トップジョーは標準の取付けボルト用穴を使用して取付けてください。

ドローバのトップジョー取付け面には、標準のトップジョー取付けボルト用穴の両側にカタログに表示されていないボルト穴があります。 図 12

ドローバを製作する際に用いる治具取付けボルト用 穴です。治具取付けボルト用穴は, トップジョーの 取付けには使用できません。


正規の取付け位置以外でトップジョーを取付けると トップジョーまたはジョー取付けボルトが破損して トップジョーやワークが外れる場合があります。回 転中にこのような事故が起きれば、作業者や近くに いる人に致命的なけがを負わせるおそれがあります。

③ トップジョーを表6に示すボルトを用いてドローバに固定します。 ボルトは表6に示す締付トルクで締付けてください。

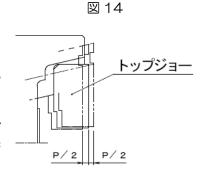
表6

10					
チャックサイズ			80	10	12
ボルトサイズ			M14	M16	M16
ドローバねじ深さ	L1	(mm)	27	30	30
トップジョーねじ深さ	S	(mm)	22	25	25
トップジョーのボルト座面厚さ	Т	(mm)	13	15	15
締付けトルク		$(N \cdot m)$	128	161	161

取付ボルトは正確な締付トルクで締付けてください。

表 6 に示されたトルクより少ないと、ボルトが緩んでトップジョーやワークが外れるおそれがあります。また、過大なときはトップジョーやドローバが変形して作動不良を起こしたり、破損してトップジョーやワークが外れることがあります。

トップジョーやワークが外れると、作業者や近くにいる人に致命的なけがを負わせるお それがあります。


3.3 トップジョーの成形

トップジョーを取付けたら、これをワークに合せて成形します。

ワークはジョーストロークの中央付近で把握するようにしてください。ストロークの中央付近で使用するのが、機能および精度のうえから最良です。このチャックは全ストロークの中央でドローバーのトップジョー取り付け面円筒部の中心とチャックボデーの中心が一致するようになっています。

中央付近で把握出来ない場合は、終端から全ストロークの 1/4 を除く範囲としてください。これは、ワークの外径を把握するときは、ジョーストロークの内寄り 1/4 では把握してはならないことを意味します。

トップジョー成形時のシリンダ圧力は、ワークを実際に加工するときと同じ圧力としてください。トップジョーの成形要領は図 15 を参照してください。

ジョーストロークの終端付近では把握しないでください。

機械加工の行われていない鋳造・鍛造ワークは、外形が不揃いのために安定した把握ができないことがあります。未加工の鋳造・鍛造ワークをジョーストロークの終端付近で把握しようとすると、把握力が十分に伝わらず、切削の衝撃でワークがずれて外れることがあります。このような事故が起きれば、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

図 15

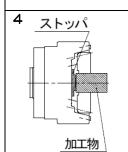
●成形リングを用意します

- ・標準トップジョーを使用する場合の成形リングの寸法は図 16 および表 7 を参照して製作してください。
- ・成形プラグの把握部外径はマママ 程度とし、把握時歪まない厚さとしてください。

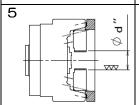
2

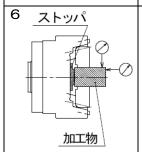
●成形リングを把握します。

- ・トップジョーを取付面に押し付けながら取付けます。
- ・成形リングをドローバ端面へ載せて、成形リングが傾かないように、ドローバ端面へ押し当てながら把握させます。



成形リングを把握するときには指をはさまないように十分に注意してください。誤って指をはさむとけが を負うおそれがあります。


注意:成形リングが傾いた状態で把握させると、把握精度が悪くなります。


- ●成形リングを把握したままの状態で、加工物把握部(φd)を仮成形します。
 - ・最終的に φ d'部は加工物の把握部直径と同径(H7 程度)に仕上げますが、この段階では取り代を残した径に成形します。

- ●仮成形が終わったら加工物を把握し、トップジョーを取付面に密着させて本締めします。
 - ・仮成形が終わったら、成形リングを取外します。
 - ・トップジョー取付けボルトをいったん緩めたのち、仮締めします。
 - ・油圧回路を操作して、低油圧力で工作物を把握します。(設定圧:約0.5MPaとします。)
 - ・この状態でトップジョー取付けボルトを規定のトルクで締付けてください。
 - ・トップジョーを開いた状態にして加工物を取外し、油圧力を設定圧力にして再び成形リングを把握 します。

- ●成形リングを把握したままの状態で、加工物把握部(φd")を成形します。
 - ・ ϕ d" 部は加工物の把握部直径と同径(H7 程度)に、表面粗さは 1.6a 以下に加工してください。
 - ・最終仕上げは、切り込み、送り量を少なくして成形すると、より高精度な仕上げ面を得ることができます
 - ・成形時の油圧力は、使用圧力に設定してください。

- ●成形が終わったら加工物を把握し、トップジョーのストロークと把握精度を確認してください。
 - ・成形が終わったら、成形リングを取外します。
 - ・試切削を行い、加工精度や工作物のスリップが無いことを確認してください。

図16

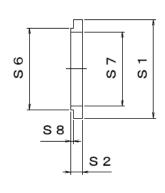
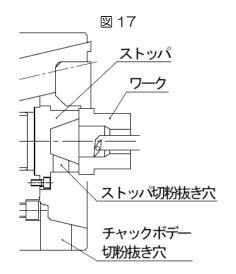


表7

チャックサイズ		8	10	12
S1	(mm)	210	254	304
S2	(mm)	25	30	30
S6 +0.2	(mm)	174	208	258
S7	(mm)	158	188	238
S8	(mm)	5	5	5

3.4 ストッパの取付け


ドローダウンチャックは、ワークをチャックの回転軸方向に位置決めしないと安定した把握ができません。ワーク

をチャックの回転軸方向に位置決めするためには、チャック前面に押し当てるほか、ワークの形状によってはチャックの前面に基準片(ストッパ)を取り付けることが必要な場合があります。

このチャックは,把握時の引き込み作用により,ワークをストッパに 強く引き付けて把握します。このため基準面の振れが,ワークの直角 度と平行度の仕上げ精度に大きく影響します。基準面は,十分な精度 と硬度を確保してください。

貫通した内径加工がある場合、ストッパは全周がワークに当たるカップ形状として下さい。ストッパに設ける切粉抜き穴はチャックボデーの切粉抜き穴の位置と一致するようにして下さい。

ストッパを設計する場合は、当社に図面の承認を受けてください。豊 和工業が承認しないストッパを使用した場合に発生する事故に対す る責は負いかねます。

回転軸方向にワークの位置決めがないと安定した把握状態が得られません。

そのような状態で切削を行うと、ワークが外れて作業者や近くにいる人に致命的なけがを 負わせるおそれがあります。

3.5 使用条件の設定

チャックの使用条件の中には切削力以外に、ワークの把握長さ、ワークの突出長さ、摩擦係数、回転数など数多くの要素があります。最適な使用条件を決めるためには、これら全てを考慮しなければなりませんが、これにはかなり手間のかかる計算手順を必要とします。これを行なう上でドイツ技師協会が発行する「VDI 基準 No.3106」が参考になります。この「VDI 基準 No.3106」は(財)日本規格協会より購入することができます。

当社では「VDI 基準 No.3106」の日本語版を用意しておりますので必要の場合には請求してください。

回転中の把握力は、6.3 把握力 の項のグラフを参照してください。 このグラフは以下の条件で測定したときの値を示したものです。

- ・標準生爪を使用
- ・ジョーストロークの中心となる位置にて把握力計を把握
- ・許容シリンダカにて把握

最高回転数はチャックの機能と各部品の強度を考慮して豊和工業が独自に決めたもので す。

従って、これは全ての条件における安全を保証する値ではありません。

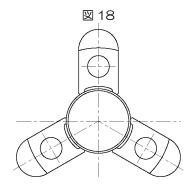
この値は、トップジョーの形状、重量、寸法と外形、切削力、把握力およびメンテナンスの状態に強く影響されます。これらの要素はすべてユーザ側の責任範囲に属するものです。 与えられた条件のもとで回転数が高すぎるとワークが外れて飛び出し、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

3.5.1 許容シリンダカ

仕様表やカタログに表示された許容シリンダカは、標準生爪を用いる限り、それが原因でチャックが破損すること のない最大のシリンダカです。

許容シリンダカは、それが必要な場合には加えても差し支えありませんが、常に最大の能力で使用されて、最良の 状態を長期にわたって保つことができる機器はほとんどありません。良好な把握精度を長期にわたって維持するためには、加えられる切削力に対してワークを保持するために必要で、しかも十分な把握力に調整することが最も効果があります。

許容シリンダカを超える力をチャックに加えるとチャックの部品やボルトが破損して把握 力が一瞬のうちに失われてしまいます。


回転中このような事故が起きれば、トップジョーやワークが外れて、作業者や近くにいる 人に致命的なけがを負わせるおそれがあります。

3.5.2 ワークの変形

変形しやすいワークの時は、把握力を低くして変形を小さくしなければなりません。ただし、回転数が高くなったときに、遠心力の作用でワークを保持できなくなるおそれがありますから、把握力を小さくするときは特別の注意が必要です。

変形の問題は、トップジョーがワークを包み込むような形状にすることによって、より良い結果が得られます。また、6ヶ所の把握点に均等に把握力が加わるように、トップジョーの把握面の中心を削除すると効果があります。

ただし、当社が承認しない図面に基づいて製作されたトップジョーを用い て発生した事故に対する責は負いかねます。

備考: 薄いリング状のワークに, 合計すると同じになる力を6等分して等間隔で加えた場合,3等分して等間隔で加えた場合に生じる変形の約1/20となります。

3.6 作業上の注意

当社はチャックのメーカですから、チャックが取付けられる旋盤やマシニングセンタの安全性については責任を負いかねます。全般的な機械の安全な操作に関する規則やガイドは数多くありますが、ANSI B11.6 はその中でも最も重要なものです。しかし ANSI であれ他の基準であれ、これらに技術面で完全に適合しているとしても、それが安全を保証するわけではありません。全ての基準は総合的な安全の一部について考慮しているだけですから、それを守ったとしても最低の基準を満足するにすぎません。

ここでは通常の作業の流れに沿って、一般的に払うべき注意をかいつまんで説明します。以下の説明を超えて行われる作業については、あらゆる面から検討した上でユーザ側の責任において決定してください。

機械全体を覆うカバーを設置しないとワークなどが飛び出したときに、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

3.6.1 ワークを把握する前に

作業を始める前に、チャックを作動させるための回転シリンダに必要な油圧または空気圧 が供給されていることを確認してください。

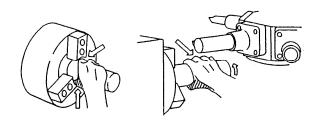
圧力が供給されていなかったり、不十分のときは、切削を始めたときワークが外れて飛び 出し、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

注意

「ANSI B11.6-1984」では、シリンダの把握側に圧力が供給されていない場合には、チャックの回転を阻止するインタロック回路または、視覚聴覚に働き掛ける警報装置を取付けることを規定しています。

トップジョーまたはストッパと、刃物台や刃物とが干渉していないことを、低い回転数で確認してから切削してください。

トップジョーまたはストッパと、刃物台や刃物とが干渉していないことを確認するために、 ワークを把握しないで、低回転にて加工サイクルを実行してください。


干渉を起こすとこれらが激しく衝突し、トップジョーやストッパが外れて飛び出し、作業 者や近くにいる人に致命的なけがを負わせるおそれがあります。

このチャックの取付けに当たって、空気圧または油圧システムが異常を起こしたときに圧力を失わないようにするために、チャックとの接続部分にチェックバルブとアキュムレータを設置しないと、ANSI B11.6-1984 section 4.3.2 に適合しません。

また、チェックバルブとアキュムレータとともに、チャックやワークと作業者や近くにいる人を完全に隔てるカバーの設置が重要です。これがない場合、ワークなどが飛び出したときに、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

3.6.2 ワークを把握するとき

ワークを把握するときには、トップジョーとワークまたはワークと機械本体との間に体の 一部がはさまれないよう注意しなければなりません。

作業者が手をはさまれてけがをすることがあります。

注意

「ANSI B11.6-1984」では、チャックの一部とワークの表面との隙間が、最も開いた時に 1/4 インチ(約6 mm)を超える場合は、そこに作業者の体の一部が入らないようなカバーを付けることを規定しています。

ワークの後端面がチャックのストッパ端面から離れている場合,ワークの回転中心がチャックの回転中心に対して傾斜している場合,またはワークが鋳造・鍛造で、湯口やバリが 突出している場合は切り込み量が予想より大きくなり,切削力がチャックのワークを保持 できる限界を超え,ワークが外れることがあります。

回転中にこのような事故が起きれば、作業者や近くにいる人に致命的なけがを負わせるお それがあります。このようなことが予想されるときには、安全のために低速で試験切削を 行ってください。

☑ 19

回転中のチャックのトップジョーや不規則な形状のワークは、輪郭が良く見えませんから、 不注意で作業者が触れてしまうおそれがあります。

回転中のチャックに体の一部が巻込まれると、非常に深刻な負傷を起こしますので、回転中にはだれも近づくことができないような覆い、柵を回転部の周囲に設けなければなりません。

注意

「ANSI B11.6-1984」では、回転部に作業者が近付くことができないような覆い、柵の設置を規定しています。

スピンドル回転中は,回転シリンダの切換弁の操作を行ってはならない。 把握したワークが飛散し危険です。

注意

「ANSI B11.6-1984」では、チャックが回転している時はチャックの開閉操作が無効になるような安全回路を設けることと、開閉操作が無意識の操作から守られることを規定しています。

また「ANSI B11.6-1984」は、足踏みスイッチが使われている場合には、誤操作から守ることを要求しています。

3.6.4 作業終了

作業が終了したら、ワークをチャックから外してください。

ワークを把握した状態で放置した場合, 回転シリンダの供給圧力の低下や停止または誤作 動によってワークが外れ, 機械を破損させるおそれがあります。

4. 保守

4.1 給油

チャックの最も一般的な不具合の原因は潤滑油の不足や不適合です。

潤滑油が不足したり, 推奨油種以外の潤滑油を用いると, 摩耗が早く進むだけでなく把握力が不足して, 切削中に ワークが外れるなどの危険が生じます。給油は以下のガイダンスに従って確実に行ってください。

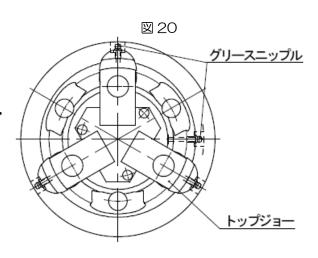
給油箇所	推 奨 油 種	給油期間
チャックボデー外周の グリースニップル	モリコート EP グリース	8 時間の使用につき 1 回 ただし、切削水が常時かかる場合には、4 時間の使 用につき 1 回

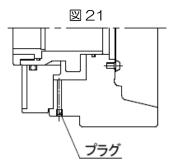
モリコート EP グリース取扱

東レ・ダウコーニング 株式会社

本店 〒100-0005 東京都千代田区丸の内 1-1-3(AIG ビル)

TEL 03-3287-1155 FAX 03-3287-8460


4.2 給油個所と給油方法


給油箇所と方法は次の要領にて行います。

この形式のチャックには、チャックボデー外周の各ドローバと 同位相位置にドローバの摺動面へのグリース給油として3ヶ所、 それ以外にドロースリーブ摺動面へのグリース給油として1ヶ 所のグリースニップルが設けてあります。

給油はトップジョーが閉じた状態(ドローバー後退端)にて行います。トップジョーが開いた状態で給油しますと、ドロースリーブの動きが重くなる場合があります。

全ての形式のチャックボデー外周には、グリース抜き穴が1ヶ 所設けてあります。グリースの給油が過剰となり、ドロースリ ーブの動きが重くなった場合プラグを外し、ジョーを開閉させ て余分なグリースを排出させてください。

プラグ穴から勢い良くグリースが排出される場合があります。 プラグ穴を作業者に向けて行わないで下さい。

排出作業終了後は、プラグをもとどおりに締めてください。

プラグを外した状態でチャックを使用しますと,切削水や切削屑やスケールがチャック内部 に侵入して,把握力の低下,焼き付きが発生します。

この状態で切削を行うとワークが外れ,作業者や近くにいる人に致命的なけがを負わせるお それがあります。

潤滑油が不足すると、把握力の低下、異常摩耗、焼き付きが発生します。

この状態で切削を行うとワークが外れ,作業者や近くにいる人に致命的なけがを負わせる おそれがあります。また,指定以外の潤滑油を用いると腐食や摩耗が早く進み,把握力を 失う原因となります。

不適切な潤滑油を用いると、チャックの把握力が不足します。

切削中にワークが外れて飛び出し、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

防錆効果のある切削水を用いないと、チャック内部に発生した錆が摩擦を増加させて把握 力が低下することがあります。

その結果切削中のワークが外れて飛出し、作業者や近くにいる人に致命的なけがを負わせ たり、機械を破損させるおそれがあります。

4.3 分解と清掃

給油が十分行われていても、微細な切削屑やスケールがチャック内部に侵入して、ドローバやドロースリーブの周囲にたまり、円滑な作動を妨げることがあります。

分解清掃は通常の使用条件で、1000 時間の使用につき一回とします。分解清掃を行うときは、部品の摩耗や破損の状態をよく調べ、必要な場合には交換してください。

チャック内部に切削屑がたまると、把握力の低下、ジョーストロークの不足が発生し、その状態で切削を行うとワークが外れ、作業者や近くにいる人に致命的なけがを負わせるお それがあります。

4.3.1 分解手順

安全のために吊ボルトやアイボルトを使用してチャックを落下させないようにします。

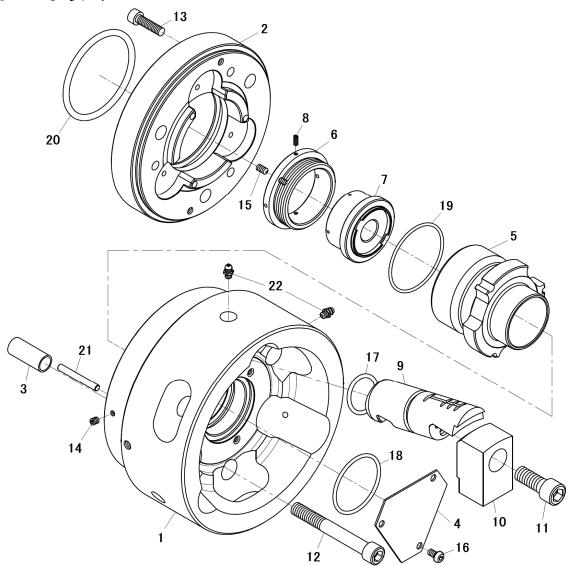
- ① トップジョーを取外します。
- ② チャック前面のストッパなどの付属部品を取外します。
- ③ チャック取付けボルトを外し、専用レンチを用いてドロースクリュを反時計方向へ回転させながら緩め、チャックを機台から外します。
- ④ チャック本体を裏返して、作業台の上へ置きます。
- ⑤ リアカバー取付けボルトを外し、リアカバーを取外します。
- ⑥ チャック内部にある3本のシャフトを取出します。
- ⑦ チャックボデーを作業台の上で横にします。
- ⑧ ドロースリーブを前進端位置に移動させたのち、ドロースリーブを約60°回転させ、ドロースリーブの切欠き 部分をドローバの位置に合わせます。
- ⑨ ドロースリーブを取出します。
- ⑩ ドローバを取出します。

4.3.2 組立手順

組立は、分解と逆の手順で行います。この時、Oリングを破損させないように十分注意してください。

4.4 安全回転数の設定

「ANSI B11.6-1984」の section 7.1.9 には、安全回転数の設定についてのガイドラインが設けられています。 安全回転数は、チャックがワークを把握する能力を左右するドローバの摩耗の程度に影響されます。ドローバやチャックボデーの案内面が荒れて、把握力が維持できないような状態であれば、適切に修正しなければなりません。 さらにチャックの使用法によっては、把握力を定期的に測定する必要があります。把握力に変化がなくても、ワークを把握するチャックの機能を維持するために、内部の汚れ具合を定期的に検査しなければなりません。 またチャックの回転数は、ワークを供給する速さ、ワークの大きさや重さ、ワークの材質、切削や加工の方法、切削速度や送りなど、作業内容が変わる度に再検討しなければなりません。



トップジョーをゆるめたままチャックの中に残しておいてはいけません。 主軸が起動したときにそれらが飛び出し、作業者や近くにいる人に致命的なけがを負わせ るおそれがあります。

▲警告

チャックは損傷がない限り、同じ空気圧または油圧のもとでは一定の把握力を維持しなければなりません。しかしながらチャックがワークを把握する能力は、爪とワークの間の摩擦係数を低下させる原因となる爪の把握面の摩耗によって悪化します。また爪がワークを保持する能力はワークそのものに依存します。例えば直径が大きく重いワークは大きな力を爪に加えることになり、爪がワークを保持する能力を容易に超えてしまうことがありますし、回転数が高くなればワークを外すような力を増加させることにもなります。汚れや錆び、不適切な潤滑剤などメンテナンスの不備も、チャックがワークを保持する能力を低下させる一因となります。最終的には、旋盤やマシニングセンタがワークに対して行なう加工法が、ワークとチャックの爪に加えられるべき正確な力と、それがチャックの爪がワークを保持する能力を超えるかどうかを決定します。従って作業内容が変わる度に、または変わらない場合は定期的に、必ずチャックがワークを保持する能力を検討しなければなりません。チャックがワークを保持する能力を超えるような力を発生する加工は、ワークを外れさせる原因となります。このような事故が起きれば、作業者や近くにいる人に致命的なけがを負わせるおそれがあります。

4.5 パーツリスト

No.	品名	数量	No.	品名	数量
1	チャックボデー	1	12	六角穴付ボルト	3
2	リアカバー	1	13	六角穴付ボルト	3
3	カラー	% 3	14	六角穴付止ネジ	1
4	カバー	1	15	六角穴付止ネジ	1
5	ドロースリーブ	1	16	六角穴付ボタンボルト	3
6	ドロースタッド	1	17	Oリング	3
7	ドロースクリュ	1	18	Oリング	1
8	ボールプランジャ	4	19	Oリング	1
9	ドローバ	3	20	Oリング	1
10	トップジョー (ソフトジョー)	3	21	シャフト	3
11	六角穴付ボルト	3	22	グリースニップル	4

^{※ 12} インチのみ、それ以外のサイズは無し

シールリスト

2_103/1							
No.	品名		H3ET		数量		
INO.		8	10	12	奴 里		
17	Oリング	P32 (JIS)	P38 (JIS)	P38 (JIS)	3		
18	Oリング	P80 (JIS)	P102 (JIS)	P135 (JIS)	1		
19	Oリング	G55 (JIS)	G80 (JIS)	G110 (JIS)	1		
20	Oリング	AS568-145	AS568-236	G115 (JIS)	1		

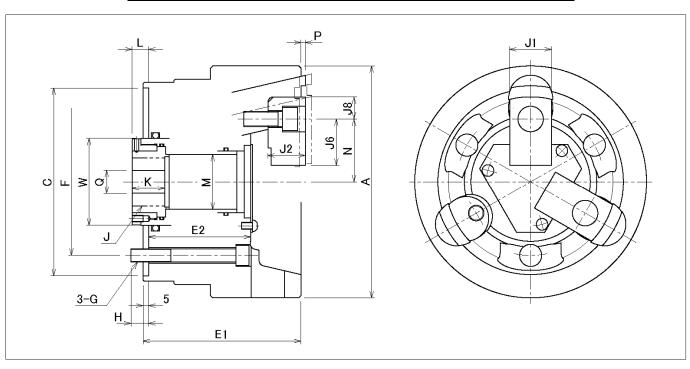
5. 故障対策

チャックを使用中に不具合が生じましたら当社へ連絡をしていただく前に下記の点をお調べください。

不 具 合	原因	対 策
チャックが作動しない	チャック部品が破損している。	分解の上, 取替える。
		 分解の上,焼付部分を油砥石で修正 するか,部品を取替える。
	回転シリンダが作動していない。	配管系統を調べ異常がなければ、回転シリンダの分解清掃を行う。
ドローバのストローク不足	切粉が内部に大量に入っている。	分解清掃をする。
	回転シリンダとコネクチングパイ プが緩んでいる。	回転シリンダを外して締め直す。
ワークがスリップする	トップジョーのストロークが足り ない。	ワークを把握したときに, トップジョーがストロークの中央付近にあるようにする。
	圧力が不足している。	圧力を設定値まで上げる。
	トップジョーの成形径がワーク径に合っていない。	正しい成形方法に基づいて再成形を行う。
	切削力が大き過ぎる。	切削力を計算してチャックの仕様に 合っているかを確かめる。
	ドローバや各摺動部の油が切れている。	各部のグリースニップルから給油を 行い,加工物を把握しないでトップ ジョーの開閉操作を数回行う。
	回転数が高すぎる。	必要な把握力が得られる回転数まで 下げる。
精度不良	チャック外周が振れている。	外周および端面振れを確認してボル トを締付ける。
	ストッパ端面が振れている。	ストッパの端面振れを修正する。
	ドローバやトップジョーの取付け端面にゴミが付着している。	トップジョーを取外した後、取付け端面をよく清掃してゴミを取除く。
	トップジョーの取付ボルトが十分締まっていない。	トップジョーの取付ボルトを十分締め付ける。 (ただし締め過ぎに注意すること)
	トップジョーの成形法が間違っている。	成形プラグがチャック端面に対して 平行かどうか、成形プラグが把握力 のために変形していないかを確かめ る。 また成形時の圧力、成形部の面粗度
	トップジョーの背丈が高過ぎ、ト	などをチェックする。 トップジョーの背丈を可能な限り低
	ップジョーが変形したり, トップ ジョーの取付ボルトが伸びてい る。	くする。トップジョーの背丈が高過ぎると、チャックの寿命にも悪い影響を与える。
	非常に重量の大きな加工物をトップジョーの力だけで持ち上げるため,一箇所のトップジョーに変形が集中している。	把握するとき,加工物を中心付近で 保持し,全重量が一本のトップジョ ーに加わらないようにする。
	把握力が大き過ぎ,加工物を変形 させている。	加工できる範囲で,把握力を低くして変形を防止する。

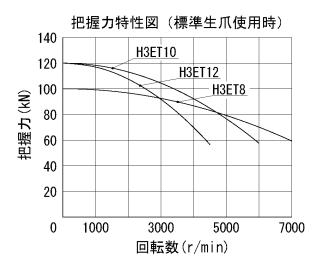
6. 仕様

6.1 仕様


		形式番号		НЗЕТ	
仕様			8	10	12
ジョーのスト	トローク(直径)	mm	5	5	5
	マストローク ストローク)	mm	11	11	11
		最大 mm	130	160	210
取人・取り	1把握径(外径)	最小(注1) mm	25	35	85
最 高 使	用回転数	r/min	7000	6000	4500
許 容 シ	リンダカ	kN	41	49	49
把	握 力	kN	100	120	120
慣性モ	ーメント	kg·m² (注2)	0.14	0.37	0.71
質量(標準	生爪を含む)	kg	26	44	58
対応	シリンダ				
04.7.4	形式番号		140	165	190
C1TA	最高使用圧力	MPa	3.5	3.4	2.6

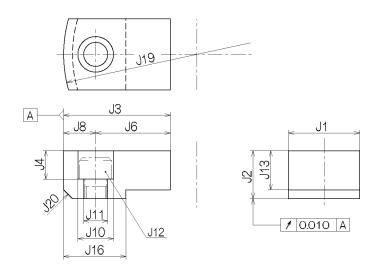
注1:標準生爪使用時

注2:この数値の4倍がGD²に相当します。 注3:回転シリンダの最高回転数が低い場合には、その回転数に合わせてください。


6.2 寸法

	形式番号		LLOET	
	/DAME 0	H3ET		
記号		8	10	12
Α		210	254	304
С	H7	170	220	220
E1		143	158	163
E2		92.5	102.5	102.5
F		133.4	171.4	171.4
G		M12	M16	M16
Н		16	20	20
J	Max.	M45×2	M65×2	M92×2
J1		38	43	43
J2		34	39	44
J6		42	50	49
J8		20	22	23
K		29.5	35.5	35.5
L	Max.	20.5	24.5	19.5
L	Min.	9.5	13.5	8.5
M		50	72	100
N	Max.	58.25	71.25	95.25
IN	Min.	55.75	68.75	92.75
P	Max.	9.5	9.5	9.5
P	Min.	-1.5	-1.5	-1.5
Q		21	25	25
W		79	102	135

6.3 把握力


次のグラフは、標準生爪を使用したときのチャック回転中の把握力を示します。

この把握力特性は、標準トップジョーを使用してワークをジョーストロークの中央にて把握したものとして示して あります。

6.4 標準生爪

標準生爪の寸法を下記に示します。

チャックサイズ	8	10	12
J1	38	43	43
J2	34	39	44
J3	62	72	72
J4	21	24	29
J6	42	50	49
J8 ±0.15	20	22	23
J10	23	26	26
J11	15.5	17.5	17.5
J12	M14	M16	M16
J13	31	35	40
J16	46	54	54
J19 k7	154	184	234
J20	5	5	5

6.5 付属品

梱包箱にはチャック本体の他に下記の付属品が同梱されていますので確認してください。

チャックサイズ			8	個数
チャック取付け用 六角穴付ボルト	M12 L=95	M16 L=105	M16 L=105	3
六角棒スパナ	B=3 B=4 B=10 B=12	B=3 B=5 B=14	B=3 B=6 B=14	各1
専用レンチ と レンチ用ロッド	0	0	0	1
アイボルト	M10	M10	M12	1

限定保証

売り主は製品が、頒布されている仕様条件に従って製造されたもので、材料上および/または仕上 げ上欠陥がないことを保証いたします。

売り主は、工場へ元のまま返品された運送費前払いのもので、売り主が点検して材料および/または仕上げに欠陥があると判断した製品は、売り主の自由意志で、修理もしくは交換をいたします。 前記のものについては、それが売り主の保証違反に対する唯一の救済となるものとします。

売り主は、これに限定されるわけではありませんが、市場性や市販性に関する保証、特定の目的または用途に関する保証、もしくは特許侵害に対する保証など本保証条件以外のものは、明示の保証であろうと黙示の保証であろうと、なんらの保証もいたしません。売り主は、いかなる直接的損害、付帯的もしくは間接的な損害金、あるいは欠陥製品もしくは製品の使用に起因する損害金または費用については、なんら責任はないものといたします。

Table of contents

Introd	uction	
Safety	y Information	
Safety	y Precautions	
	struction and Operation	. 4
1.1	Model Coding	. 4
1.2	Construction and Operation	. 4
2. Insta		
2.1	Unpacking	
2.2	Accessories	
2.3	Preparations for Installation	
2.4	Stroke Control	
2.5	Installation Procedure	
	2.5.1 Before Installation	
	2.4.2 Removing Draw Screw	
	2.4.4 Installing Draw Screw	
	2.5.5 Installing Chuck Adapter	
	2.5.6 Installing Chuck	
	2.5.7 Inspection	
	2.5.8 Balance	
3. Pred	autions for Use	. 9
3.1	Selecting Top Jaws	
3.2	Installing Top Jaws	
3.3	Forming Top Jaws	. 11
3.4	Installing Stopper	
3.5	Setting Working Conditions	
	3.5.1 Permissible Cylinder Force	
	3.5.2 Work Deformation	
3.6	Precautions for Operation	
	3.6.1 Before Gripping Work piece	
	3.6.2 When Gripping Work piece	
	3.6.3 During Cutting Operations	
4 Mair	3.6.4 End of Operations	
4.1	Lubrication	
4.2	Lubricating point and procedure	
4.3	• .	
	4.3.1 Disassembling Procedure	
	4.3.2 Assembling Procedure	
4.4	Setting Safe Rotational Speed	
4.5	Parts List	. 20
5. Trou	bleshooting	. 21
6. Spec	cifications	. 22
6.1	Specifications	
6.2	Dimensions	
6.3	Gripping Force	
6.4	Standard Top Jaws	. 24

Introduction

- 1. This instruction manual describes the HIGH SPEED type 3-jaw through-hole draw down power chuck H3ET (standard model).
- 2. Please read this manual carefully and fully understand the procedures for installation, operation, inspection, and maintenance before operating the chuck.
- 3. Ignoring any instructions in this manual may result in a serious accident or machine damage, leading to injury to the operator or personnel near the machine.
- 4. Always keep this manual handy and use care not to lose it.
- 5. Please contact us (phone and fax numbers are shown below) for information regarding this manual and the objective product. Another copy of this manual is also available from the following address:

HOWA MACHINERY, LTD.

MACHINE TOOL ACCESSORIES TEAM SALES GROUP CREATIVE ENGINEERING DIVISION MACHINERY DEPT

1900-1, SUKAGUCHI, KIYOSU, AICHI, 452-8601 JAPAN

Phone : International access code-81-52-408-1254 Facsimile: International access code-81-52-409-3766

6. The values of this manual are described in SI unit system. Values of former unit system can be obtained by following calculations.

Pressure 1MPa=10.197kgf/cm² Force 1kN =101.97kgf Torque 1N·m=0.10197kgf·m

Safety Information

This manual contains warning messages for safe operation that are indicated by Safety Alert Symbols. Carefully read and fully understand these messages.

The danger levels of the Safety Alert Symbols are defined below:

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. These warning massages include the preventive actions those are indispensable to avoid danger.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. These warning massages include the preventive actions those are indispensable to avoid danger.

Indicates a potentially hazardous situation which, if not avoided, could result in minor injury or machine damage.

There are many hazardous situations that may occur during operation, inspection, and maintenance of the chuck used under various circumstances. We cannot predict all of these hazards.

Accordingly, the warning messages described in this manual do not cover all the hazardous situations.

Also, there are too many things that are impossible or prohibited in chuck operation to describe completely in this manual.

We cannot assume any responsibility for any damage or accidents caused through operation, inspection, or maintenance that is not specified in this manual.

Safety Precautions

The following precautions apply to handling, maintenance, and operation of the chuck. Read and understand them carefully before use.

Never operate the rotating cylinder selector valve while the spindle is rotating.

Otherwise, the gripped work piece may come off and fly out.

Never put any part of your body inside the spindle cover while the spindle is rotating.

Otherwise, you may be caught in the rotating elements.

Route solenoid valves so that the chuck keeps clamping the work piece even if the power is interrupted.

Otherwise, the gripped work piece may come off and fly out.

Keep the hydraulic pressure constant while the chuck is gripping the work piece.

Otherwise, the gripped work piece may come off and fly out.

Turn off the power before installing, inspecting, or servicing the chuck.

Otherwise, you may be caught in the rotating elements.

Always operate the chuck within the maximum speed described in the specification table.

Increase in the chuck speed lowers the gripping force, and the chuck may lose hold of the work piece.

Securely tighten the bolts with the specified torque.

Otherwise, the bolts may become loose or damaged, resulting in coming off or flying out of the parts or the work piece.

The table below shows the bolt sizes and their tightening torque.

Tightening torque

Bolt size		M6	M8	M10	M12	M14	M16
Tightening torque	(N-m)	12.1	29.4	57.9	101	128	161

Lubricate the chuck periodically.

Failure to lubricate the chuck may remarkably shorten the lifetime of the chuck.

Lubricate the chuck once in eight hours of operation. However, when using a large amount of water-soluble coolant, lubricate once in four hours.

Recommended oil: MOLYKOTE EP GREASE

(supplied from Dow Corning Corporation)

For all the chuck parts including consumables, place an order with Howa Machinery, Ltd.

Howa shall not be liable for any accidents caused by use of parts not supplied from Howa. Any and all warranties are invalid unless only Howa's genuine parts are used.

The H3ET chucks cannot grip the inside diameter of the work piece.

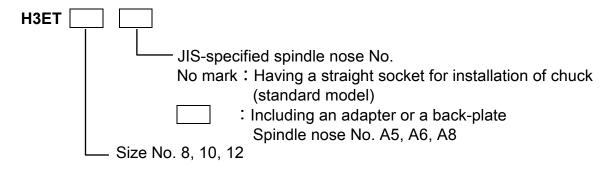
Gripping the inside diameter will cause poor gripping accuracy and insufficient gripping force. This, in turn, may cause the work piece to fly off and may cause severe personal injury or death to the operator or bystanders.

Use eyebolts when mounting or removing the chuck.

(Use the suspender belt when handing a 6-inch chuck, and eyebolt when handling an 8-inch chuck.)

Otherwise, you may drop the chuck or suffer from lumbar injury due to excessive load.

NOTE:


The words of "gripping force" and "clamping force" are used as a synonym in this instruction manual.

Both words mean total force of clamping each jaw in a chuck.

1. Construction and Operation

1.1 Model Coding

The HIGH SPEED type 3-jaw through-hole draw down power chucks are sorted as follows.

1.2 Construction and Operation

The HIGH SPEED type 3-jaw through-hole draw down chuck basically consists of a chuck body, draw bars and draw sleeve.

The draw bars are inserted so as to be at an angle in relation to the rotational center of the chuck body. There is a notched groove at the rear of the draw bar, and the draw bars engage with the draw sleeve at this notched groove.

When the draw sleeve is drawn backward, the draw bars pass through the top jaws with a wedging operation. The work piece is pulled toward the chuck edge and gripped. This chuck cannot grip the inside diameter of the work piece.

NOTE:

This manual regards the top jaw side as "front" and the draw screw side as "rear".

2. Installation

2.1 Unpacking

Take the chuck out of the package box. At this time, be careful not to take out or lift it by hands. This is because 8-inch chuck weigh over 20 kg, and lifting such a heavy chuck may cause damage to your lumbar or injury by dropping the chuck. Instead, break open the box and screw an eyebolt into the screw hole outside the chuck. Then, use a chain block to lift the chuck.

Use the eyebolt when installing or removing the chuck.

You may drop the chuck or suffer from lumbar injury due to excessive load.

2.2 Accessories

The package box contains the accessories besides the chuck itself.

Please refer to the section 6. 5 "Accessories" for particulars.

2.3 Preparations for Installation

Except the direct-mount chuck of H3ET \(\text{A} \) type, a chuck adapter is needed to install the chuck onto the lathe spindle. Contact us if you need information on how to design a chuck adapter.

In addition to the chuck adapter, a rotating cylinder, a cylinder adapter, a connecting pipe, and either a hydraulic or pneumatic pressure source are required to operate the chuck. However, please refer to the Rotating Cylinder Instruction Manual for what pertains to them.

We, upon request, will review drawings for the connecting rod.

The user must fabricate a connecting pipe in accordance with the lathe used and the chuck, which has been selected.

It is extremely important that connecting rod be sufficient to assure rigidity and strength.

Insufficient strength or rigidity will cause breakage of the connecting pipe and instantaneous loss of gripping force to the chuck. This may cause the work piece to be released during operation.

Contacts here

Chuck Body

2.4 Stroke Control

Although the rotating cylinder stroke of the rotating cylinder should not be necessary controlled according to the chuck plunger (/draw sleeve) stroke, adjust the draw screw so that the draw sleeve contacts the rear cover of the chuck.

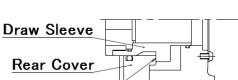
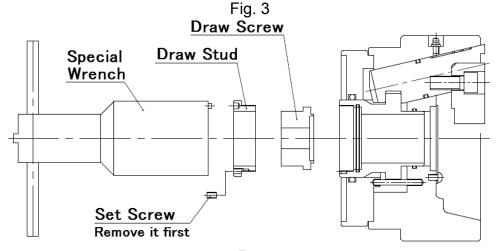


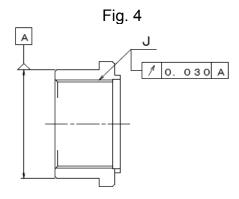
Fig. 2


2.5 Installing Procedure

2.5.1 Before Installation

After taking the chuck out of the package box, wipe off all anticorrosive oil clinging to it with a cloth permeated with cleaning oil.

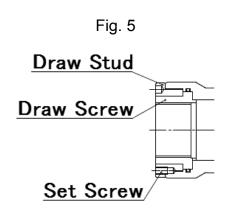
2.4.2 Removing Draw Screw


The draw screw must be given an internal thread so as to be connectable to the connecting pipe, in order for the chuck to be operated. Thus, the draw screw must be removed from the draw sleeve. Remove the set screw and draw stud to permit draw screw removal. To remove the retainer, use the special wrench.

2.4.3 Thread-Cutting on Draw Screw

The female thread in the draw screw (J) must be cut to match the screw diameter of the connecting pipe. The maximum thread cutting diameters are indicated in Table 1 for various chuck types and sizes. Ensure that the runout does not exceed the tolerance indicated in Fig. 4.

Table 1			(mm)
Chuck size	8	10	12
J_{max}	M45	M65	M92

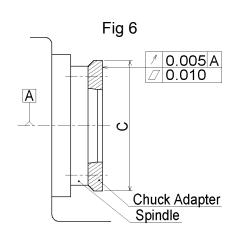


The connecting pipe must keep enough wall thickness to ensure the strength even after threading.

Caution, stated in the paragraph 2.4.3, for processing the screw must be strictly kept for securing ample strength of a draw screw. If neglecting confirmation alternatively, instantaneous loss of gripping force to the chuck will cause by breakage of the connecting pipe or draw screw. At a result, this may cause the work piece to be released during operation and may severe personal injury or death to the operator or bystanders.

2.4.4 Installing Draw Screw

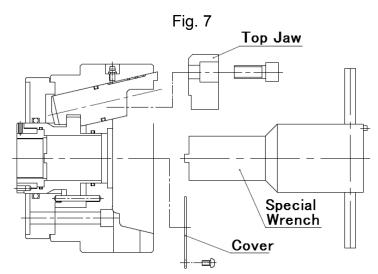
After cutting the thread in the draw screw, the installation is performed in the opposite order of the removal.



2.5.5 Installing Chuck Adapter

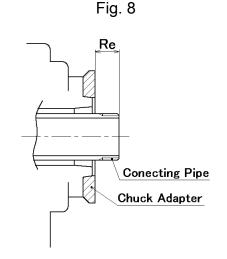
Install the chuck adapter on the spindle end face.

Then the chuck installing socket (C) and datum face should be machined in place.


The clearance of the chuck adapter in relation to the chuck installing socket (C) should be $0.040 \sim 0.050$ mm in diameter.

2.5.6 Installing Chuck

- (1) Remove the top jaws and cover before attempting to install the chuck.
- (2) The chuck has a screw hole for the eyebolt on the periphery. Screw the attached eyebolt into this hole and lift the chuck.
- (3) Move the connecting rod to the forward end by operating the hydraulic or pneumatic circuit.


In this state, the distance **Re** between the front end face of the chuck adapter and that of the connecting pipe will be as shown in Table 2.

If the dimension Re is greater than that indicated in Table 2, the chuck cannot be installed.

Table1			
Chuck size	8	10	12
Re±1(mm)	20	22	27

Adjust the screw depth of the connecting rod (Re) to a proper length.

If the **Re** value is greater than that indicated in Table 1, the screw depth of the connecting pipe is not long enough to fully engage with the draw screw. This will mean that the screw will be broken and all of the gripping force will be lost immediately. If this accident should occur, the work piece may fly off, and in turn may cause severe personal injury or death to the operator or bystanders.

- (4) Insert the Special wrench equipped from the front side of the chuck and check to see whether the draw screw can be turned.
- (5) Hoist the chuck with the chain block and screw in the draw screw into the connecting pipe until it can be tightened no more.

Use extra care when operating the hydraulic or pneumatic circuit during the chuck installation.

If you actuate such circuits accidentally during chuck installation, you may be caught between the chuck body and the spindle or between the top jaw, resulting in injury.

(6) Secure the chuck body to the chuck adapter using the chuck installing bolts provided as accessories.

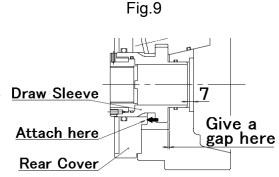
Install for the periphery and the end face the chuck body do not deviate exceeding the limits indicated in Table 3.

Table 3			(mm)
Chuck size	8	10	12
Runout the outer periphery T.I.R		0.020	
Runout the end face T.I.R.		0.020	

For the torque to be applied to the chuck installing bolt, refer to Table 4.

Table 4

Bolt size	M12	M16
Tightening torque (N-m)	101	161


Fasten the chuck installing bolts with recommended tightening torque.

If the torque is largely different from the recommended value, lower or higher, the bolts may break and the chuck and/or work piece may fall out; this presents a hazard that may cause severe personal injury or death to the operator or bystanders.

(7) Turn the draw screw with a special wrench, and adjust the position of the draw sleeve. The end face of the draw sleeve is to be 7mm from the fitting face of cover for correct operation as shown in Fig.9.

The draw screw has a click (ball plunger for anti-rotation), and therefore stop the draw screw at a point where its revolution becomes heavy, and adjust the draw sleeve position.

- (8) Install the cover and the top jaws to complete the chuck installation.

(9) If you installed the chuck by screwing the eyebolt into the chuck periphery, remove the eyebolt.

Be sure remove the eyebolt, when the installation is carried out with using an eyebolt.

If you rotate the chuck with the eyebolt being screwed, you may be caught by the part of your body or clothing and get injured.

2.5.7 Inspection

Operational resistance develops when there is some abnormality in the installation procedure. If the chuck is used without removal of the resistance, parts seizure or abnormal wear may occur, causing marked shortening of service life. Once the installation has been completed, be sure to check out the minimum operating pressure. If it is too high, remove the chuck and solve the trouble.

2.5.8 Balance

When the chuck is additionally machined or equipped with jigs, ensure that the chuck weight is balanced. Unbalanced chuck will cause vibration and fail to maintain required machining accuracy. When machining an unbalanced work piece, take the eccentric mass of the work piece into consideration and rotate the chuck at a low speed. This is because the centrifugal force due to eccentric mass applies to the top jaws. The chuck balance described in this manual is based on the standard balance quality (4 mm/s) defined in JIS B0905-1992, and the unbalance amount of the chuck periphery is specified as shown in Table 5.

(International Standards that correspond to JIS B0905-1992 are ISO1940-1: 1986 and ISO8821: 1989.)

т	I	_ I	_	_
	o r	วเ	\boldsymbol{D}	~
	α	JI	$\overline{}$	v

Chuck size	8	10	12
Max. unbalance (g)	1.3	2.2	3.2

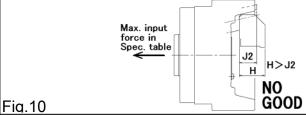
3. Precautions For Use

3.1 Selecting Top Jaws

The chuck is equipped with a set of standard soft top jaws. We are ready to prepare standard soft jaws and special top jaws as optional accessories at your request. If necessary, place an order your from nearest Howa representative. We disclaim all the warranties and responsibility for accidents caused by use of the top jaws not prepared by Howa.

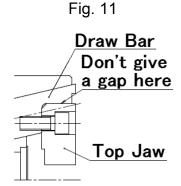
For all the chuck parts including consumables, place an order with Howa Machinery, Ltd.

Howa assumes no responsibility for accidents caused by use of the parts not prepared by Howa. Any and all warranties are void unless only Howa genuine parts are used.


Do not use any top jaws which are heavier than those supplied with this chuck.

If the mounted jaws are heavier than the standard soft jaws or standard hardened jaws, the chuck will lose extra gripping force by the centrifugal force due to excess in weight. This, in turn, may cause the ork piece to fly off and may cause severe personal injury or death to the operator or bystanders.

When using the top jaws that are higher than the standard top jaws, lower the cylinder force in inverse proportion to the top jaw height.


If the distance H (from the chuck front end face to the gripping position) is greater than the height X of the standard soft top jaws (dimension X in the following figure or in the table of dimensions), a force larger than the allowable value is applied to the top jaw installation bolts even when the chuck is operated within the permissible cylinder force (specified in the specification or product catalogue). As a result, the installation bolts may be broken and the top jaws and/or work piece may come off. This may; in turn, cause severe personal injury or death to the operator or bystanders. Even if the top jaws' installation bolt does not break, the great force exerted upon the sliding portion of the draw bar, due to this peculiar application procedure, will shorten service life considerably.

3.2 Installing Top Jaws

(1) Select the top jaws in terms of the work piece and install them on the chuck. Before doing so, however, clean off the fitting portions of the top jaw and draw bar with a compressed air blow.

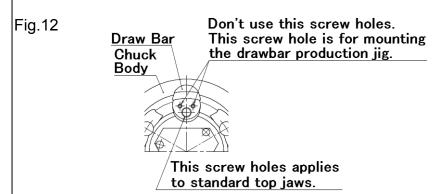
What dirt or foreign matter remains can be loosened with cleaning oil, brushed vigorously, then blown off by compressed air.

NOTE

When the end surface and the fitting portions of the top jaw and the draw bar are damaged, it is similar to when dirt clings to the fitting portions; the top jaw is not seated properly, causing poor accuracy. When the damage is noticed, a whetstone and file should be used to repair it.

(2) The top jaws engage with the fitting portions of the draw bar, and the arrangement is secured with the bolts. Therefore, this must not be used in areas other than specified.

Never install the top jaws to other than the prescribed place.


If the top jaws are installed to other than the prescribed places, draw bars are possibly break off, causing top jaws and/or work piece to come off. This may, in turn, cause severe personal injury or death to the operator or bystanders.

Install the top jaws with standard screws.

Screws those are not prescribed in the catalogue are furnished at the both side of the standard screw. Those are for draw bar production jig. Those screws can not be used for mounting the top jaw.

If the top jaws are installed to other than the prescribed places, the top jaw installation bolts are possibly snap, causing top jaws and/or work piece to come off. This may, in turn, cause severe personal injury or death to the operator or bystanders.

(3) Install the top jaws to the specified position on the draw bar using bolts indicated in Table 6. Use the fastening torque for the bolts as indicated in Table 6.

128

Table 6 Chuck size 8 10 12 Bolt size M14 M16 M16 Depth of draw bar screw 27 30 30 L1 Length of top jaw screw S 22 25 25 Thickness of top jaw bolt 15 13 15 washer

(N-m)

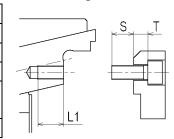


Fig.13

Tightening torque

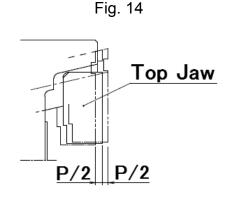
Use exact torque for fastening bolts.

If less torque is used than specified in Table 6 above, the bolts may loosen in the top jaws and/or the work piece could come off. If the torque is greater than that specified the top jaw or draw bar will deform and defective operation will result, leading to breakage and release of the top jaws and/or work piece. In either case, the resulting flying off of work piece and/or top jaws may lead to severe personal injury or death to the operator and/or bystanders.

161

161

3.3 Forming Top Jaws

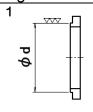

When the top jaws are installed, they must be machine-formed to align flush with the work piece.

The best position to clamp the work piece for this chuck is at the middle of total jaw stroke concerning the function and accuracy. The centerline for internal surfaces of draw bars is coincides to that of the chuck body when the jaw stroke is at the middle of total jaw stroke.

If impossible, the jaw stroke should be such that there is one-fourth of the jaw stroke remaining, as measured from the stroke end. Thus, if you are gripping the outside diameter of the work piece with the jaws, one-fourth of the inside stroke remains.

The cylinder pressure when the top jaws are formed should be the same as when the work piece is actually being cut.

See Fig. 15 for the specific steps for forming the top jaws.



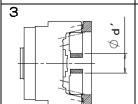
Do not grip near the end of the jaw stroke.

Forged or molded work pieces have surface irregularity as far as they are not machined. The chuck may not be able to grip such a work piece in a stable state. Gripping a forged or molded work piece, not machined, near the end of the jaw stroke will cause insufficient gripping force, and the application of the tool to the work piece may cause the work piece to slip out of the jaws and fly off. This may cause severe personal injury or death to the operator or bystanders.

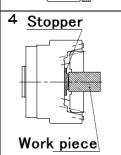
Fig.15

- Prepare a ring for forming the top jaws.
 - In case using the standard top jaws, determine of a forming ring referring Fig.16 and Table 7.
 - The finish of ϕ d part is to be around $\nabla\nabla\nabla$. Forming ring should have enough rigidity to avoid the deformation by the clamping force.

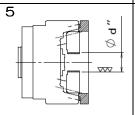
2


Clamp the forming ring.

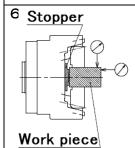
- · Install while pressing the top jaw to the mounting surface.
- Put the forming ring on the front face of the draw bar.
- Press the forming ring against the front face of the draw bar, and then clamp it preventing the inclination of ring.


Use care not to pinch your hand when clamp the forming ring, or you will suffer injury to your hand.

Note: Press the forming ring against the front face of the chuck, and then grip it preventing the inclination of plug. Inclination of ring causes inferior accuracy.



lacktriangle Provisional form ϕ d' part, keeping the ring as above-mentioned.


• Finally diameter ϕ d' should be formed in the same diameter as the clamping diameter of the work piece (approx. allowance H7), but in this stage, forming in diameter leaving a cutting stock in finish cutting.

- After finished provisional forming of top jaws, clamp the work piece, and attach the top jaws in close contact with mounting surface
 - After finishing the provisional forming procedure, remove the forming ring.
 - · Once loosened the top jaw mounting bolts, and then provisionally tighten.
 - Clamp the work piece with lower pressure operating the hydraulic circuit.(Approx. 0.5MPa)
 - · In this condition, fasten the top jaw mounting bolts with prescribed torque.
 - Under the state of unclamping the top jaws, remove the work piece, adjust the pressure to required value, and then clamp the forming ring again.

- •Form ϕ d" part where the work piece is held, keeping the ring as above-mentioned.
 - Diameter ϕ d" should be formed in the same diameter as the clamping diameter of the work piece (approx. allowance H7) and its surface finish should be better than 1.6a.
 - · Minimize the cutting depth and feed to obtain the better surface when finishing.
 - · Pressure for the jaw forming is to be the same as that of actual operation.

- After finished forming of top jaws, clamp the work piece in jaws and check that required jaw stroke and gripping accuracy are obtained.
 - · After finishing the forming procedure, remove the forming ring.
 - Try the test cut to ensure the accuracy and no slippage.

Fig.16

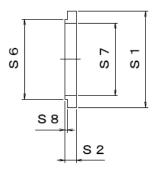
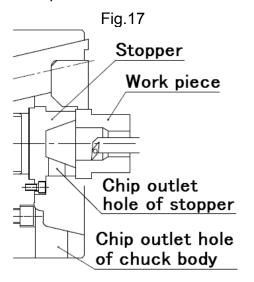


Table 7

Chuck size		8	10	12
S1	(mm)	210	254	304
S2	(mm)	25	30	30
S6 +0.2 0	(mm)	174	208	258
S7	(mm)	158	188	138
S8	(mm)	5	5	5


3.4 Installing Stopper

The draw down chuck cannot grip stably if the work piece is not positioned in the chuck's axial

turning direction. To position the work piece here, the work piece must be pressed against the chuck's work face, but in some cases, depending on the work piece configuration, a stopper has to be equipped on the front face of the chuck.

If there is a through internal cutting, the stopper should be a cup-shaped, entire circumference contact with the work-piece.

When designing a stopper, obtain Howa approval of the stopper drawings. Accidents which occur using a stopper not approved by Howa at the engineering design stage will not be Howa's responsibility.

If the work piece is not positioned in the chuck's axial turning direction, a stable grip will not be achieved.

If cutting is carried out in this state, the work piece may fly off and may cause severe personal injury or death to the operator or bystanders.

3.5 Setting Working Conditions

The chuck using conditions includes not only cutting force but also many factors such as cutting force, work gripping length, work protruding length, friction coefficient, and rotational speed. In order to determine the ideal working conditions, all of these factors must be given due consideration, with considerable time necessary to perform the calculations.

The "VDI Standard No 3 106" put out by the German Technicians Association is a good reference in this regard. For your copy, write:

Beuth Verlag GmbH Postfach 1 145 NOTE: 1000 Berlin 30 West Germany

NOTE: Howa is happy to send you a copy of the English version of the above standard upon request.

The gripping force during rotation can be determined from the chart in subsection 6.3 "Gripping Force". The values shown in this chart are obtained under the following conditions.

- Standard soft top jaws are installed.
- The gripping force-measuring instrument is held at the middle of the full jaw stroke.
- Gripped with maximum cylinder force.

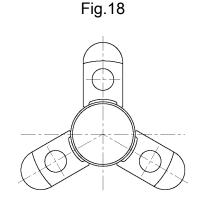
The allowable maximum rotational speed is arbitrarily determined by Howa in consideration of the chuck performance and the strength of each part.

Hence, this speed is not suitable to assure safety in every situation, because it is greatly influenced by top jaw configuration, weight, dimensions and shape, cutting force, gripping force and the maintenance conditions. All such influencing factors fall within the realm of user responsibility.

Excessively high rotational speeds for a given set of conditions may cause the work piece to fly off and may, in turn, cause serious injury or death to the operator or bystanders.

3.5.1 Permissible Cylinder Force

The permissible cylinder force indicated in the specification table or catalogue is the maximum cylinder force at which the chuck will not suffer damage, presuming those standard soft jaws are used. This maximum force may be used as required, of course, but ordinarily long-term use under conditions of maximum force is not recommended. To maintain long-term gripping precision, one must keep sufficient work-holding force in relation to the cutting force, and with adjustment for sufficient but not excessive gripping force the most effective performance will be achieved.


The use of excessive input force will lead to breakage of chuck parts or bolts and sudden loss or gripping force.

If such a mishap takes place while the chuck is rotating, the work piece may fly oft, causing severe injury or death to the operator or bystanders.

3.5.2 Work Deformation

When a work piece tends to be easily deformed, lowering the gripping force can minimize the deformation. However, when the rotational speed becomes too high, it is less easy to support the work piece due to the effect of the centrifugal force. Thus, great care must be taken when lowering the gripping force.

The solution to the problem of deformation is to arrange the jaw configuration so that it wraps around the work piece to assure better results. Also, when the outside diameter of the work piece is not perfectly round, the top jaws act like a swivel and grip the work piece securely as the draw-down chuck rotates in the area where the draw bar is. Effect can be obtained if the center of the

grip ping plane of the top jaw is cut so as to apply the equal force at 6 gripping positions. Howa assumes no responsibility when top jaws other than Howa approved are employed.

3.6 Precautions for Operation

We are the chuck manufacturer, and are not responsible for the safe operation of the combined chuck and lathe or machining center into which the chuck is installed. There exist numerous rules and guides for overall safe operation among the most respected is ANSI B11.6- 1984.

Nonetheless, while reference may be made to ANSI and/or specifications, mere mechanical compliance with ANSI and/or other standards does not ensure safety.

All standards should be considered only as elements of an overall safety consideration, and when considered alone constitute only minimum standards.

What follows is a partial enumeration of universal precautions, which should be taken in the normal course of operation. Particular steps beyond or in addition to those, which will be discussed below, must be determined by the individual user after a complete review of all aspects of the work to be done.

A failure to guard the machine as whole may lead to serious injury or death to the operator or bystanders.

3.6.1 Before Gripping Work piece

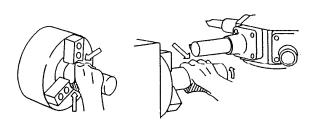
Before beginning operations, check to be sure that the pneumatic or hydraulic pressure needed to operate the chuck is being supplied to the rotating cylinder. If not supplied or not sufficient, the work piece could slip out and fly off as the cutting starts, and may cause severe injury or death to the operator and/or bystanders.

NOTE

ANSI B11.6-1984 prescribes installation of an interlock circuit for preventing chuck rotation or an audible or visible warning system activated when the required pressure is not supplied to the cylinder gripping side.

Perform a test run at low speed before cutting to verify that the top jaws or the stopper does not interfere with the turret or tools.

To make sure that there will be no interference of the top jaws or stopper with the turret or tools, do a test run cycle at low spindle speed without work gripping.


Should there in fact be interference, the resulting sharp collision may cause the top jaws or the stopper to fly off, which may lead to severe injury or death to the operator and/or bystanders.

To comply with ANSI B11.6-1984 section 4.3.2, you need to install a check valve and an accumulator in the connecting area with the chuck so that the hydraulic or pneumatic system does not loose pressure in case of failure.

Besides check valve and accumulator, it is essential to install a shielding cover that separates the chuck and work piece from the operator or bystanders. Without such a cover, the work piece, chips or tool fragments will fly out, causing severe injury or death to the operator and/or bystanders.

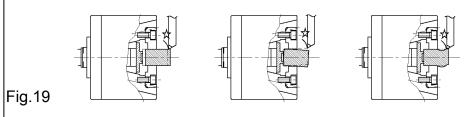
3.6.2 When Gripping Work piece

When gripping the work piece with the chuck, be careful not to get any part of your body caught between the top jaws and the work piece or between the work piece and the machine. The operator's hand may be injured.

NOTE:

ANSI B11.6-1984 prescribes installation of a shielding cover (guard) so that no part of the operator's body can be caught between a part of the chuck and the surface of the work piece when the space in between exceeds 1/4 inch with the jaws fully opened.

3.6.3 During Cutting Operations


In any of the following cases, the tool impact on initial cutting contact may result in an unexpected cutting force in excess of chuck workholding capacity:

The back end of the work piece is away from the chuck's stopper face.

The rotating center of the work piece is not aligned with the chuck rotating center.

The work piece is a casting or forging part having a projecting gate or burr.

This may cause the work piece to slip out, which may in turn, cause severe injury or death to the operator or bystanders. If this situation is possible, begin tool contact with the work piece initially during a low speed test run.

Severe personal injury may result if the operator mistakenly comes into contact with a spinning chuck whose top jaws or gripped work piece have irregular contours which are not readily visible while rotating. A door or guard must be provided to prevent anyone from approaching the spinning chuck.

NOTE:

ANSI B11.6-1984 prescribes use of a door or a guard to keep the operator from approaching the rotating part(s).

Never operate the rotating cylinder selector valve while the spindle is rotating.

Otherwise, the gripped work piece may come off and fly out.

NOTE:

ANSI B11.6-1984 prescribes the installation of a safety circuit to nullify opening or closing of the chuck during its rotation, and the need to protect the operator from inadvertent opening or closing of the chuck, usually by a shield.

ANSI B11.6-1984 also requires that when a foot pedal switch is used, it must be protected from inadvertent operation.

3.6.4 End of Operations

Remove the work piece from the chuck at the end of operations. If the work piece is left gripped in the chuck, the cylinder supply pressure may decrease, or the work piece may fall oft due to mistaken operations, it may cause severe personal injury and machine damage.

4. Maintenance

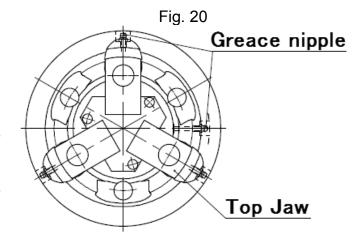
4.1 Lubrication

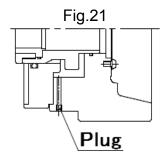
The most frequent cause of chuck failure is insufficient or improper lubrication. If lubrication is insufficient or if a non-specified lubricant is used, not only will wear be accelerated, the gripping force will be inadequate, with the possibility of the work piece coming off during the cutting operation. Adhere to the following guidelines for lubrication.

Lubrication Points	Recommended Lubricant	Time of Lubrication
Grease nipples on outside of chuck body	MOLYKOTE EP GREASE	Once every 8 hours, but where coolant is constantly used, once every 4 hours.

Recommended oil: MOLYKOTE EP GREASE (supplied from Dow Corning Corporation)

4.2 Lubricating point and procedure


Lubricating point and process execute with following procedure.


In each of these models, three grease nipples are furnished on the outer surface of chuck body at almost same angular position of draw bars for lubricating them. Besides them there is one grease nipple on the outer surface of chuck body for lubricating draw sleeve.

Lubrication should be done when the jaws are closed position. (Draw bars are at the end of receding side)

If lubrication is done when the jaws are opened, the movement of draw sleeve may becomes heavy.

At all the models of this chuck, one place of grease discharge hole is provided for outside of chuck body. When the movement of draw sleeve becomes heavy with the oversupply of grease, remove a plug, and make open and close jaw and discharge surplus grease.

Grease may come out violently from drain port when the chuck is operated.

Never stand in front of drain port during the operation.

After draining the excessive grease, slip the plug to the drain port and fasten it tightly.

Operating without the plug cause entering the coolant, cutting tips or scale into the chuck body.

This causes lower gripping force or seizure of mechanism.

Cutting undertaken in this condition will lead to work piece disengagement and may causes severe personal injury or death to the operator and/or bystanders.

Insufficient lubrication will lead to lower gripping force and create abnormal friction and seizure. If the cutting is done in such conditions, the work piece will come off and may cause severe injury or death to the operator and/or bystanders. Lubrication with non-specified lubricants may also permit extraordinary corrosion and/or wear and will lead to a loss of gripping force.

The operator and/or bystanders may be seriously injured or killed if improper lubricants are used.

Improper lubricants may reduce gripping force of the chuck and permit work pieces to fly out of the chuck.

Failure to use an anticorrosive coolant can cause rust build up inside the chuck that increases friction. This may reduce gripping force of the chuck and work pieces may fly out of the chuck. This causes serious injury or death to the operator and/or bystanders, as well as damage to the machine.

4.3 Disassembly and Cleaning

Even with proper lubrication, fine chips or scale can enter the chuck to jam the area of the jaw guide or wedge plunger, thus preventing smooth operation. Disassembly and cleaning must be done on a regular basis every 1000 hours. When doing so, inspect carefully for parts wear and breakage, replacing as necessary.

If the chuck interior becomes jammed with chips, the gripping force will decrease or the jaw stroke will become short. If cutting is performed under such a condition, the work piece may be disengaged from the chuck, causing severe injury or death to the operator and/or bystanders.

4.3.1 Disassembling Procedure

For safety reasons, use suspender belt and eyebolt to prevent the chuck from falling off.

- (1) Remove the top jaws.
- (2) Remove the accessories such as stopper on the front surface of the chuck.
- (3) Remove the chuck mounting bolt, turn the draw screw with special wrench counterclockwise to remove the chuck from the machine spindle.
- (4) Turn over the chuck and place it on the working table.
- (5) After removing the rear cover mounting bolts, remove the rear cover.
- (6) Take out the three shafts in internal to the chuck.
- (7) Lie the body down on the working table.
- (8) After moving the draw sleeve to the forward end position, rotate the draw sleeve about 60°, match the notch portion of the draw sleeve to the position of the draw bar
- (9) Remove the draw sleeve.
- (10) Remove the draw bar.

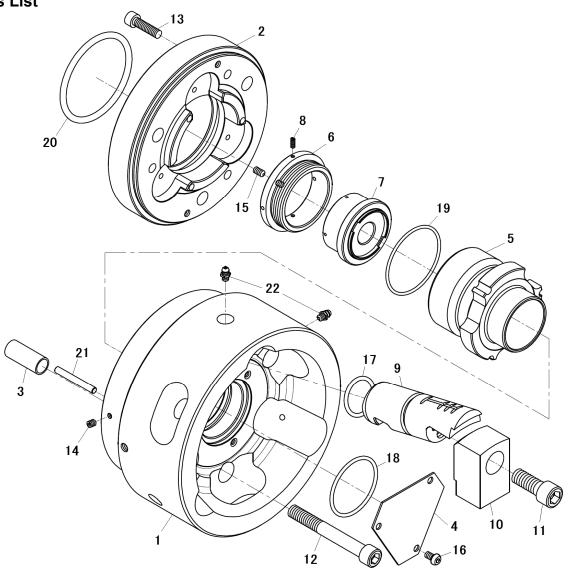
4.3.2 Assembling Procedure

Assembling is opposite way to disassembling procedure. Be careful not to harm O-rings.

4.4 Setting Safe Rotational Speed

ANSI B 11.6-1984 section 7.1.9 suggests guidelines for setting a safe rotational speed.

A safe rotational speed will be a function of the consideration of among other things, the degree of wear and tear then existing on the jaws of the chuck, which may effect their ability to grip the work piece. The jaws or chuck body should be replaced and/or properly refurbished if the surface of the master jaw or the chuck body deteriorates so that gripping force is lost. In addition, depending upon the usage received by the chuck, the gripping force should be measured periodically with a gage. There should be a regular inspection for cleanliness as a function of the ability of the chuck to grip a work piece even though its gripping pressure may remain constant. The chuck speed should be reviewed with each change in job. Including reference to the feeding speed of a work piece, a change in the size and weight of a work piece, the composition of a work piece, the type of cuts or machining performed and the speed or rate of cut.



Do not leave the chuck in the state where its top jaws is not tightened. If the spindle is rotated in such a state, the jaws will fly out, causing serious or fatal injury to the operator or bystanders.

Aside from damage to the chuck, the chuck will be able to maintain a constant gripping force upon a work piece assuming that the hydraulic or pneumatic operating pressures do not change. However, the ability of the chuck to hold a work piece will deteriorate with wear and tear on the surfaces of the jaws of the chuck, which will tend to reduce the coefficient of friction between the jaws and the work piece. The ability of the jaws to hold the work piece will depend upon the work piece itself. A larger diameter, heavier work piece, for example, will exert greater force against the jaws of the chuck, and therefore, will more easily overcome the gripping capability of the jaws of the chuck. Increase in the rpm will also add to the force, which tends to pull the work piece out of the chuck, and improper maintenance in the form of dirt, rust, improper or inadequate lubrication will also diminish the ability of the chuck to hold a work piece. Finally, the manner in which the work piece is machined in the lathe or machining center will determine the precise forces exerted on the work piece, and therefore, on the jaws of the chuck, and may overcome the ability of the jaws to hold the work piece. It is therefore absolutely required that the ability of the jaws of the chuck to hold the work piece be reviewed with each new set-up or job and periodically during the course of a long job. Machine operations of the lathe which produce forces sufficient to overcome the gripping force of the jaws of this chuck will cause the work piece to fly out which, in turn, may cause severe injury or death to the operator or bystanders.

4.5 Parts List

No.	Part Name	Q'ty	No.	Part Name	Q'ty
1	Chuck body	1	12	Hex. socket head screw	3
2	Rear cover	1	13	Hex. socket head screw	3
3	Collar	% 3	14	Set screw	1
4	Cover	1	15	Set screw	1
5	Draw sleeve	1	16	Hex. socket head button bolt	3
6	Draw stud	1	17	O-ring	3
7	Draw screw	1	18	O-ring	1
8	Ball plunger	4	19	O-ring	1
9	Draw bar	3	20	O-ring	1
10	Top jaw (Soft jaw)	3	21	Shaft	3
11	Hex. socket head screw	3	22	Grease nipple	4

※ 12 inchs size only

Seal list

No. Parts Name			Q'ty		
INO.	Parts Name	8	10	12	Qty
31	O ring	P32 (JIS)	P38 (JIS)	P38 (JIS)	3
32	O ring	P80 (JIS)	P102 (JIS)	P135 (JIS)	1
39	O ring	G55 (JIS)	G80 (JIS)	G110 (JIS)	1
40	O ring	AS568-145	AS568-236	G115 (JIS)	1

5. Troubleshooting

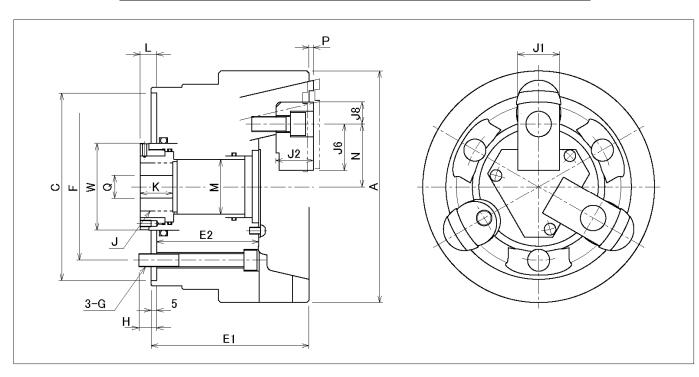
When there are any troubles with the operation of the chuck, the following causes are likely. Please check these before contacting us for service.

Trouble	Possible cause	Recommended remedy
Chuck does not operate	Damaged parts on chuck.	Disassemble and repair.
	Seizure of sliding contact part.	Disassemble and repair with oilstone or replace.
	Rotating cylinder inoperative.	Check the piping line. If no problem is detected, disassemble and clean the cylinder.
Insufficient draw bar stroke.	Chips heavily accumulated inside.	Disassemble and clean.
	Loosened joint between rotating cylinder and connecting pipe.	Remove the rotating cylinder and retighten.
Work piece slips.	Insufficient top jaws stroke.	Adjust so that top jaws come near the center of the stroke when they grip the work piece.
	Insufficient pressure.	Increase pressure to the set level.
	Top jaws do not match the work piece diameter.	Correct top jaws forming in right way.
	Excessive cutting force.	Calculate the cutting force to see if it matches the specification of chuck.
	Insufficient lubrication at draw bar and sliding parts.	Supply grease from grease nipples and open/close the top jaws a few times while no work piece is gripped.
	Excessive speed of revolutions	Reduce the speed till the necessary gripping force is assured.
Poor accuracy.	Chuck runs out.	Check peripheral and end face run-out and retighten bolts.
	Stopper end face runs out.	Correct the run-out stopper end face.
	Dust has entered the draw bar or installation end surface of top jaws.	Remove top jaws, clean installation end thoroughly to remove dust.
	Jaws fastening bolts are not tightened securely.	Fasten bolts sufficiently (but not too much).
	Jaws are not formed properly.	Confirm if the forming plug or the forming ring is in parallel with chuck's end face and if the forming plug or the forming ring is not
		deformed by gripping force. Also check forming pressure and jaws surface roughness.
	Jaws are deformed or jaws fastening bolts are extended due to excessive jaws height.	Lower the height of jaws as much as possible. Excessive jaw height may reduce the service life of the chuck.
	Deformation is caused at specific portion of jaws because jaws hold a very heavy work piece only.	Try to grip the work piece at around the centerline to avoid eccentric distribution of load to any specific jaws.
	Work piece is deformed due to excessive gripping force.	Reduce the gripping force to a reasonable amount to assure proper machining.

6. Specifications

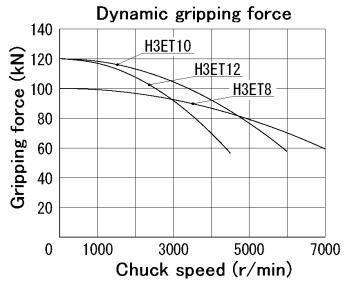
6.1 Specifications

Series number		H3ET			
Specification	ons		8	10	12
Jaw mover	ment (Dia.)	mm	5	5	5
Plunger str (Cylinder		mm	11	11	11
Recommer	nded outside	Max. mm	130	160	210
chucking d standard so		Min. (Note1) mm	25	35	85
Max. Spee	d	r/min	7000	6000	4500
Max. input	force	kN	41	49	49
	orce at Max. input I jaw force)	kN	100	120	120
Moment of	inertia J Note1	kg · m² (Note2)	0.14	0.37	0.71
Weight with soft jaws	n standard	kg	26	44	58
Matching cylinder					
	Series number		140	165	190
C1TA	Max. pressure to operate chuck	MPa	3.5	3.4	2.6


Note1: With standard soft jaws

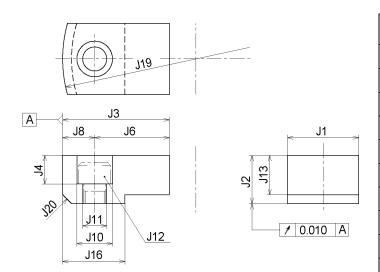
Note2: The four times of this value is equivalent to \mbox{GD}^2 .

Note3: When the Max. speed of a rotating cylinder is lower than a chuck, observe that of a rotating cylinder.


6.2 Dimensions

	Series number		H3ET	
Symbol		8	10	12
А		210	254	304
С	H7	170	220	220
E1		143	158	163
E2		92.5	102.5	102.5
F		133.4	171.4	171.4
G		M12	M16	M16
Н		16	20	20
J	Max.	M45×2	M65×2	M92×2
J1		38	43	43
J2		34	39	44
J6		42	50	49
J8		20	22	23
K		29.5	35.5	35.5
L	Max.	20.5	24.5	19.5
L	Min.	9.5	13.5	8.5
М		50	72	100
N.I.	Max.	58.25	71.25	95.25
N	Min.	55.75	68.75	92.75
	Max.	9.5	9.5	9.5
Р	Min.	-1.5	-1.5	-1.5
Q		21	25	25
W		79	102	135

6.3 Gripping Force


The following graph shows the gripping force of the rotating chuck equipped with the standard soft jaws.

This diagram is drawn in the condition that the jaw stroke is middle and using standard top jaws.

6.4 Standard Soft Jaws

The following table shows the dimensions of standard soft jaws.

Chuck size	8	10	12
J1	38	43	43
J2	34	39	44
J3	62	72	72
J4	21	24	29
J6	42	50	49
J8 ±0.15	20	22	23
J10	23	26	26
J11	15.5	17.5	17.5
J12	M14	M16	M16
J13	31	35	40
J16	46	54	54
J19 k7	154	184	234
J20	5	5	5

6.5 Accessories

The package box contains the accessories besides the chuck itself.

Chuck size Part name	8	10	12	Q'ty
Hex. socket head bolt for mounting the chuck	M12 L=95	M16 L=105	M16 L=105	3
Hex. key spanner	B=3 B=4 B=10 B=12	B=3 B=5 B=14	B=3 B=6 B=14	1 each
Special wrench for adjusting the draw screw.	0	0	0	1
Eyebolt	M10	M10	M12	1

LIMITED WARRANTY

Seller warrants its products to be manufactured in accordance with published specifications and free from defects in material and/or workmanship. Seller, at its option, will repair or replace any products returned intact to the factory, transportation charges prepaid, which seller, upon inspection, shall determine to be defective in material and/or workmanship. The foregoing shall constitute the sole remedy for any breach of seller's warranty.

Seller makes no warranties, either express or implied, except as provided herein, including without limitation thereof, warranties as to marketability, merchantability, for a particular purpose or use, or against infringement of any patent. In no event shall seller be liable for any direct, incidental or consequential damages of any nature, or losses or expenses resulting from any defective product or the use of any product.